{"id":752,"date":"2019-09-08T04:22:10","date_gmt":"2019-09-08T01:22:10","guid":{"rendered":"http:\/\/ematematik.top\/?p=752"},"modified":"2020-12-22T21:37:07","modified_gmt":"2020-12-22T18:37:07","slug":"acik-onermeler-ve-niceleyiciler-9-sinif","status":"publish","type":"post","link":"https:\/\/ematematik.top\/acik-onermeler-ve-niceleyiciler-9-sinif-752.html","title":{"rendered":"A\u00e7\u0131k \u00d6nermeler ve Niceleyiciler 9. S\u0131n\u0131f"},"content":{"rendered":"
\u0130\u00e7erisinde en az bir de\u011fi\u015fken bulunan ve bu de\u011fi\u015fkenlere verilen de\u011ferlere g\u00f6re do\u011fru ya da yanl\u0131\u015f olan \u00f6nermelere a\u00e7\u0131k \u00f6nerme<\/strong><\/span> denir. Denklemler ve e\u015fitsizlikler a\u00e7\u0131k \u00f6nermedir. De\u011fi\u015fkenlerin a\u00e7\u0131k \u00f6nermeyi do\u011frulayan de\u011ferlerinin k\u00fcmesine do\u011fruluk k\u00fcmesi<\/strong><\/span> denir.<\/p>\n <\/a><\/p>\n <\/a><\/p>\n <\/a><\/p>\n G\u00fcnl\u00fck konu\u015fmalar\u0131m\u0131zda da oldu\u011fu gibi matematik de “her”, “b\u00fct\u00fcn”, “baz\u0131”, “en az bir”, “hi\u00e7 bir” gibi s\u00f6zc\u00fck ya da s\u00f6zc\u00fck gruplar\u0131n\u0131 kullan\u0131r\u0131z.<\/p>\n \u00d6rne\u011fin<\/strong>, x bir de\u011fi\u015fken ve p(x), A k\u00fcmesinde tan\u0131ml\u0131 bir \u00f6nerme olmak \u00fczere bu \u00f6nerme ” \u2200x \u2208 A, p(x)” \u015feklinde yaz\u0131l\u0131r. x in b\u00fct\u00fcn de\u011ferleri i\u00e7in p(x) \u00f6nermesinin do\u011fru olmas\u0131 durumunda bu \u00f6nerme do\u011fru olur. \u00d6nermenin tan\u0131ml\u0131 oldu\u011fu A k\u00fcmesinde p(x) i sa\u011flamayan bir \u00f6rnek bile verilebilirse “\u2200x \u2208 A, p(x)” \u00f6nermesi yanl\u0131\u015f olur.<\/p>\n x bir de\u011fi\u015fken ve p(x), A k\u00fcmesinde tan\u0131ml\u0131 bir \u00f6nerme olmak \u00fczere bu \u00f6nerme, “\u2203x \u2208 A, p(x)” \u015feklinde yaz\u0131l\u0131r. A k\u00fcmesinde p(x) i do\u011frulayan en az bir tane x de\u011feri varsa \u00f6nerme do\u011frudur.<\/p>\n <\/a><\/p>\n <\/a><\/p>\n <\/a><\/p>\n <\/a><\/p>\n <\/a><\/p>\nHer ve Baz\u0131 Niceleyicileri<\/span><\/h2>\n
\n“Baz\u0131 g\u00fcnlerde al\u0131\u015f veri\u015fe \u00e7\u0131kar\u0131m.”
\n“Haftada en az bir g\u00fcn kitap okurum.”
\n“Baz\u0131 a\u011fa\u00e7lar\u0131n yapraklar\u0131 d\u00f6k\u00fclmez.”
\n“Her \u00e7ift say\u0131n\u0131n 1 fazlas\u0131 tek say\u0131d\u0131r.”
\n“Her negatif tam say\u0131n\u0131n karesi pozitiftir.
\n“Baz\u0131 do\u011fal say\u0131lar asal say\u0131d\u0131r.”<\/p>\n\n
\n
Her ve Baz\u0131 Niceleyicilerinin De\u011fili<\/span><\/h2>\n
Sonraki Konu:<\/span> Tan\u0131m, Aksiyom, Teorem ve \u0130spat Kavramlar\u0131<\/a><\/span><\/h3>\n
A\u00e7\u0131k \u00d6nermeler ve Niceleyiciler Sorular\u0131 ve \u00c7\u00f6z\u00fcmleri<\/span><\/h2>\n\n